

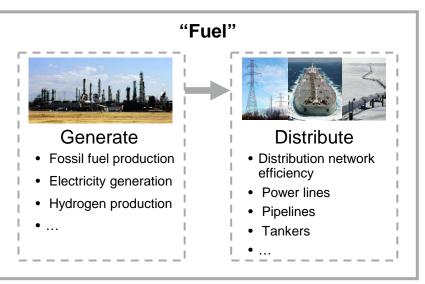
Life Cycle CO₂ of Passenger Cars

Informing the debate by examining the feasibility of considering a vehicle's whole life cycle

Jane Patterson Ricardo UK

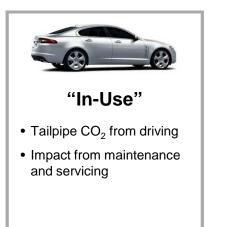
Moving to a life cycle assessment of vehicle emissions Monday 14 November 2011 London

DELIVERING VALUE THROUGH INNOVATION & TECHNOLOGY www.ricardo.com


Preparing for a life cycle CO₂ measure Report contents

- Introduction
- Strengths and Limitations of the existing tailpipe CO₂ measure
- Elements and Boundaries for evaluating life cycle CO₂ emissions
- Impact of Regulations on life cycle CO₂ emissions
- Consequences of Technology Evolution on life cycle CO₂ emissions
- Gaps, Accuracy and Further Work
- Recommendations
- Conclusions
- Appendices

A vehicle's life cycle can be divided into four "blocks" – production of the vehicle, production of the fuel, "in-use", and disposal



Production

Assessment of environmental impact of producing the vehicle from raw materials to complete product

Source: Ricardo Q57627

LowCVP Seminar

Ricardo identified >100 elements that contribute to a vehicle's life cycle CO_2 emissions

Elements from vehicle production contributing to life cycle CO₂ emissions

Design & Development	Vehicle Specification	Materials & Energy	Production Processes	Logistics	People
 R&D / Prototypes Test Rigs Design process Supplier selection Homologation Testing 	 Vehicle size / segment Vehicle mass Powertrain technology Technology options E.g. Choice of battery, electric motor, etc. Number of components Model variant Can be measured Could be measured 			 Supply chain Types of transport Distance travelled Packaging Geography 	 Number of workers Daily commute Heat and light for offices / factory H&S considerations Environmental legislation considerations Advertising and sales marketing Business trips to visit suppliers, etc
Source: Ricardo Q57627	LowCVP Seminar		14 November 2011	RD.11/487501	.1 © Ricardo plc 2011

LowCVP Seminar

Q57627

Ricardo identified >100 elements that contribute to a vehicle's life cycle CO_2 emissions

© Ricardo plc 2011

Elements from fuel well-to-tank contributing to life cycle CO₂ emissions

Primary Energy	Processing	Distribution & Infrastructure	People
 Primary energy of fuel Source / location Energy extraction process (e.g. mining, farming, etc.) 	 Type of fuel Selected production process(es) Process efficiency Waste 	 Method of distribution / transportation Pipelines, tankers, road, etc. Infrastructure chain 	 Employees H&S considerations Environmental legislation considerations
 Embedded emissions associated with mining / extraction facilities Embedded emissions associated with 	 Production of by- products along with fuel Fuel quality requirements 	 Embedded emissions associated with refuelling stations Fuel additive packs Fuel supplier variations 	
electricity generation Feedstock availablity for renewable fuels Proposed Element Boundary Fuel	 Embedded emissions associated with production facilities Energy mix used during processing Electricity mix available (e.g. fossil vs. green) 	 Fuel distributer variations Can be measured / known Could be measured / known Difficult to measure / has to be 	

14 November 2011

RD.11/487501.1

Ricardo identified >100 elements that contribute to a vehicle's life cycle CO₂ emissions

Elements from use phase contributing to life cycle CO₂ emissions

Vehicle Specification	Fuel	Driver	Geography	Maintenance & Servicing
Vehicle size	Fuel / energy type	▲ Ownership model	▲ Location	Service interval
Kerb weight	Fuel specification	Owner affluence	▲ Terrain (e.g. hills	Oil and coolant
Powertrain	Fuel quality	Driving habits	vs flat)	changes
technology	Fuel supplier	Duty cycle(s)	Climate and	Replacement
Tailpipe emissions	Additive packs	▲ Journey length	weather	parts
& aftertreatment	▲ Standard grade	▲ Nº. journeys/day	conditions	 Tyres, brake
Performance	vs. premium	Annual mileage	Types of road (e.g. motorway vs	discs
Model variant	product	▲ Vehicle loading	urban)	Component durability / failure
Load capacity	Fuel availablity	▲ Care of vehicle	 ▲ Traffic	 Service personnel
 Target price 	Fuel price	▲ Use of onboard	management	 Heat and light for
Fuel consumption	Fuel taxation	gadgets (e.g.	 Roundabouts, 	garage facilities
Tailpipe CO ₂	Actual, real-world	GPS)	traffic lights and	▲ Vehicle life time
emissions	fuel consumption	▲ Use of air	junctions	[years]
		conditioning	 Speed bumps 	
	Can be measured / known Could be measured / know	n	 Speed limits 	Proposed
In-lieo	Difficult to measure / has to		Road congestion	Element Boundary
Source: Ricardo	owCVP Seminar	14 No	vember 2011 RD.11/	487501.1 © Ricardo plc 201

© Ricardo plc 2011

6

Ricardo identified >100 elements that contribute to a vehicle's life cycle CO_2 emissions

Elements from use phase contributing to life cycle CO₂ emissions

Vehicle Specification	Fuel	Driver	Geography	Maintenance & Servicing
 Vehicle size Kerb weight Powertrain technology Tailpipe emissions & aftertreatment Performance Model variant Load capacity Target price Fuel consumption Tailpipe CO₂ emissions 	 Fuel / energy type Fuel specification Fuel quality Fuel supplier Additive packs Standard grade vs. premium product Fuel availablity Fuel price Fuel taxation Actual, real-world fuel consumption 	 Ownership model Owner affluence Driving habits Duty cycle(s) Journey length N°. journeys/day Annual mileage Vehicle loading Care of vehicle Use of onboard gadgets (e.g. GPS) Use of air conditioning 	 Location Terrain (e.g. hills vs flat) Climate and weather conditions Types of road (e.g. motorway vs urban) Traffic management Roundabouts, traffic lights and junctions Speed bumps 	 Service interval Oil and coolant changes Replacement parts Tyres, brake discs Component durability / failure Service personnel Heat and light for garage facilities Vehicle life time [years]
In-Use	Can be measured / known Could be measured / know Difficult to measure / has to	'n	Speed limitsRoad congestion	Proposed Element Boundary

Q57627

LowCVP Seminar

14 November 2011

7

Ricardo identified >100 elements that contribute to a vehicle's life cycle CO_2 emissions

8

Elements from vehicle end-of-life contributing to life cycle CO₂ emissions

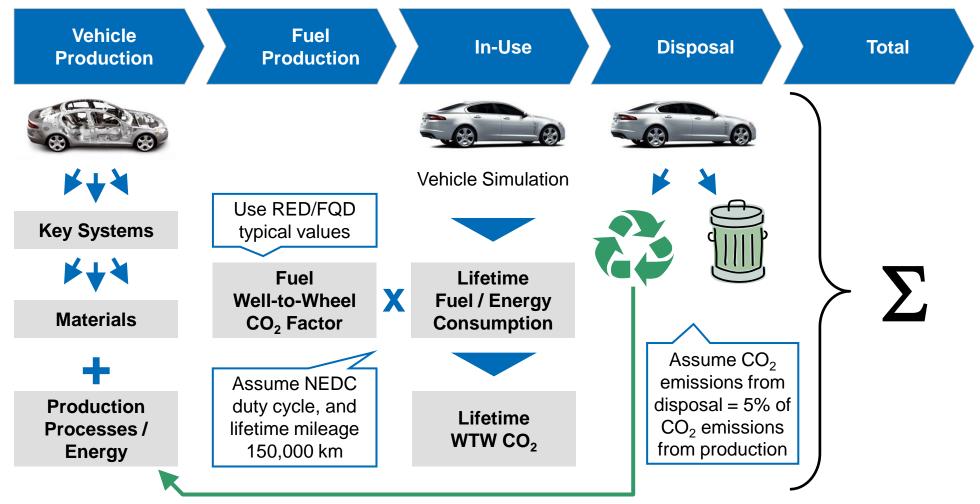
Vehicle Specification	Logistics	Processing	Re-Use & Recycling	Waste	People
 Vehicle size Vehicle mass Powertrain technology Technology options (e.g. battery type) Number of components Model variant Materials Methods for joining parts together 	 Vehicle collection Transport of vehicle / components to EoL facility Distributions of recycled materials / components Geographical location of EoL facility (e.g. Europe vs BRIC) Can be measured Could be measured Difficult to measured 		 Recycability of vehicle components Actual quantiy of material / components recycled Components suitable for reuse or remanufacturing Allocation of credit for recycling / reuse 	 Quantity of waste material Waste disposal method (e.g. landfill vs. energy recovery) Disposal of waste fluids Disposal of electrical and battery components Hazardous substances 	 Employees in logistics chain Employees of waste disposal facilities People vs machines for sorting materials H&S considerations Environmental considerations
Source: Ricardo Q57627	LowCVP Seminar		14 November 2011	RD.11/487501	1.1 © Ricardo plc 201

Impact of Regulations on life cycle CO₂ emissions

Q57627

European legislation is often designed to reduce a passenger car's environmental impact, but can have unintended consequences

Legislation	Relative effect on life cycle CO ₂ er				Commentary
	Production	WTT	TTW Disposal		
Renewable Energy Directive (Directive 2009/28/EC) / Fuel Quality Directive (Directive 2009/30/EC)	-	*	?	-	 Set European targets for increasing use of renewable energy in transport fuel, and for decreasing GHG emissions of fuels
Tailpipe CO ₂ (Regulation No 443/2009)		-	*	•	 Driver for uptake of new "low carbon" technologies, e.g. hybridisation and electrification
Tailpipe Emissions (Directive 2003/76/EC)	1	-	1	1	 Often strategies compromise on fue consumption to reduce tailpipe emissions of CO, HC, NOx and particulate
Other Type Approval legislation* (as defined by Directive 2007/46/EC)	1	-	1	1	 The objective of most Type Approva legislation is to improve safety
End-of-Life Directive (Directive 2000/53/EC)	?	-	-	**	 Driver for improving the re-usability and recyclability of automotive components

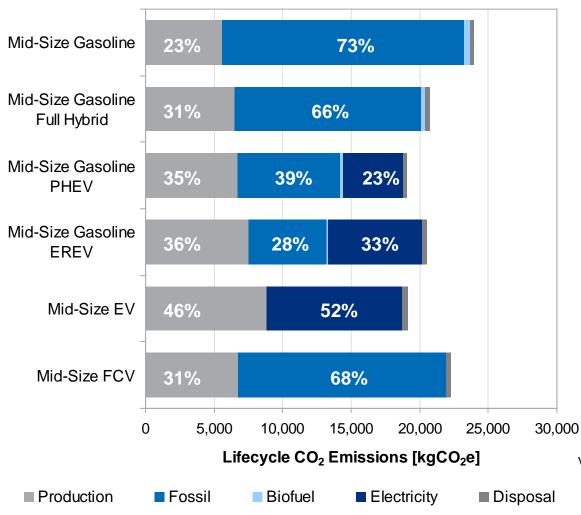

 LowCVP Seminar
 14 November 2011
 RD.11/487501.1
 © Ricardo plc 2011
 9

Ricardo have developed a simple method for estimating life cycle CO₂ emissions for a range of vehicle technologies

10

Ricardo's methodology for calculating high level estimates of life cycle CO₂ emissions

Note: This methodology provides an indication of life cycle CO₂, and is not as thorough as a detailed bottom-up LCA study


Source: Ricardo

0001001100010				
Q57627	LowCVP Seminar	14 November 2011	RD.11/487501.1	© Ricardo plc 2011

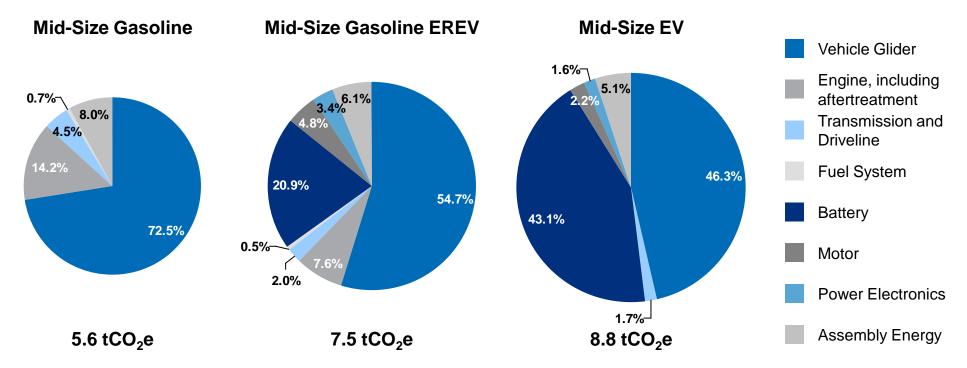
Ricardo results show hybrids and EVs will have lower life cycle CO₂ emissions, but embedded emissions will be more significant

Comparing Technologies for mid-size passenger car in 2015

- Predicted improvements in the conventional ICE powertrain designed to reduce in-use tailpipe CO₂, will naturally help to lower the life cycle CO₂ emissions
- Life cycle CO₂ reductions for hybridisation and electrification could be 10-20% (compared to a mid-size gasoline passenger car)
- However, embedded CO₂ from production increases due to the introduction of new components, such as the battery pack

Vehicle specifications based on roadmap projections for 2015. Assumed lifetime mileage 150,000 km. Fuels E10 and B7. Electricity carbon intensity assumed to be 500 gCO₂/kWh. Further details on assumptions is provided in the Appendix 2

Source: Ricardo Analysis – See Appendix 2 for input assumptions Q57627 LowCVP Seminar


RD.11/487501.1 © Ri

Consequences of Technology Evolution on life cycle CO₂ emissions

The technology evolution to plug-in vehicles will lead to higher embedded CO₂ emissions due to the addition of new components

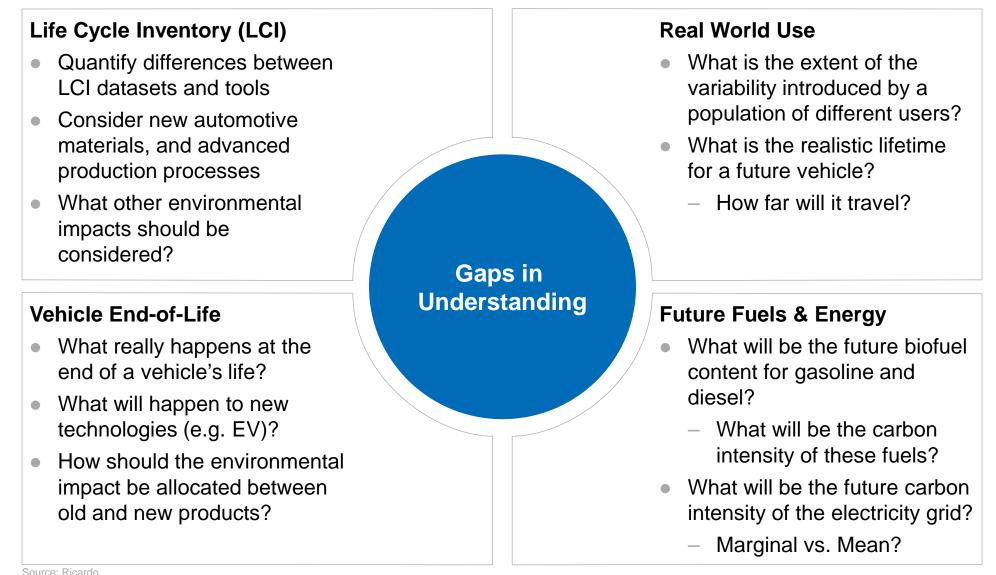
Embedded CO₂ Emissions [kgCO₂e]

- For a standard family gasoline passenger car, >70% of the embedded CO₂ emissions result from the non-powertrain components (the vehicle glider)
- However this balance will change for hybrid and electric vehicles due to the additional powertrain components

Vehicle specifications based on roadmap projections for 2015. Further details on assumptions is provided in the Appendix 2 of the report Consequences of Technology Evolution on life cycle CO₂ emissions

Many OEMs are already conducting Life Cycle Assessment studies of their vehicles that comply with ISO 14040 and ISO 14044

- The Life Cycle Assessment (LCA) process is outlined in ISO 14040:2006 (general principles) and 14044:2006 (guide for practitioners)
- Many OEMs conduct Life Cycle Assessment studies of their vehicles as part of their **Environmental Management strategies**
 - PE International's published customer list includes Audi, Daimler, Fiat, Ford, GM, Honda, Renault, Mitsubishi, Nissan, Toyota, VW, and Volvo
- Several OEMs have published Environmental Product Declarations for their vehicles, based on the results from LCA studies
 - Certificates of validity show the LCA is based on reliable data and conforms to ISO 14040
 - But it is not clear if different OEMs use the same assumptions or input data sets


organisations show that the LCA has been based on

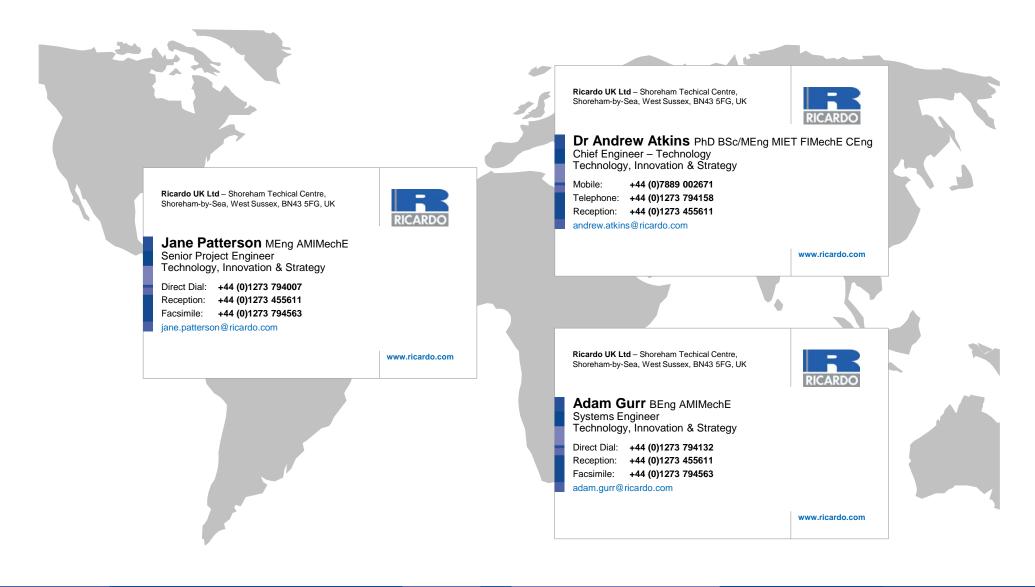
Source: The Polo Environmental Commendation, VW, 2009 ; Prius Environmental Declaration, Toyota, 2009; www.gabi-software.com/uk-ireland/customers/ LowCVP Seminar 14 November 2011 RD.11/487501.1

Q57627

Current gaps in understanding surrounding LCA revolve around the LCI data for materials, processes, fuels and energy

Q57627

Future CO₂ metrics will need to consider a vehicle's whole life cycle, but work is required to obtain common methodologies and data sets

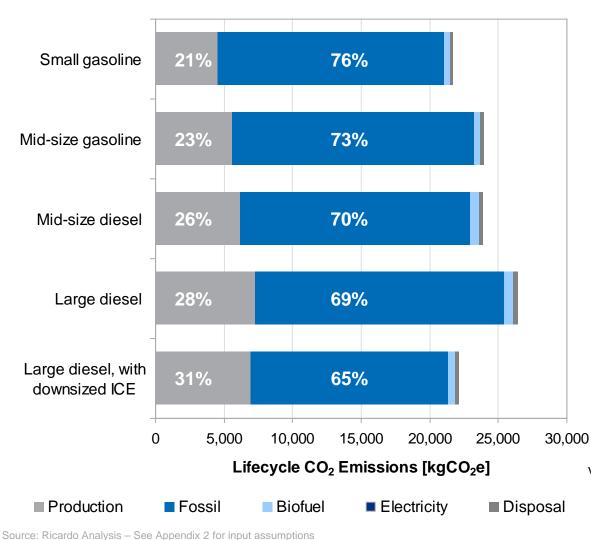


Conclusions

- Technology trends show life cycle CO₂ emissions for passenger cars are decreasing, but the embedded portion from production and disposal is increasing
 - The current regulatory frameworks do not recognise this
- Standards, manuals and tools already exist for conducting Life Cycle Assessment studies
 - Many OEMs are using LCA to create Environmental Product Declarations of their vehicles
 - However input data, boundary conditions and assumption can vary between LCA studies
- If a life cycle CO₂ measure is to be regulated, work is required to standardise the process detail, life cycle boundary, and input data, such that results from different manufacturers are directly comparable
- Meanwhile, let's make LCA part of the process
 - Get life cycle thinking embedded within the design process
 - Allow LCA results to drive reductions in both cost and CO₂ footprint ("Clean 'n' Lean")

Thank-you for listening

Appendix


Additional material

Delivering Value Through Innovation & technology www.ricardo.com

Diesel and gasoline passenger cars have similar life cycle CO₂ emissions, which generally increase with vehicle size

Comparing Vehicle Size

- As expected, larger cars have higher life cycle CO₂ emissions
- The embedded CO₂ for diesel vehicles is higher than the embedded CO₂ for gasoline vehicles. However, since tailpipe CO₂ emissions are generally lower, the life cycle CO₂ emissions for gasoline and diesel passenger cars are very similar (assuming lifetime mileage is 150,000 km)
- Adopting downsizing ICE technology will help to reduce life cycle CO₂ emissions, although this is mainly due to improvements in fuel economy leading to lower tailpipe CO₂

Vehicle specifications based on roadmap projections for 2015. Assumed lifetime mileage 150,000 km. Fuels E10 and B7. Electricity carbon intensity assumed to be 500 gCO₂/kWh. Further details on assumptions is provided in the Appendix 2

Q57627 LowCVP Seminar

RD.11/487501.1

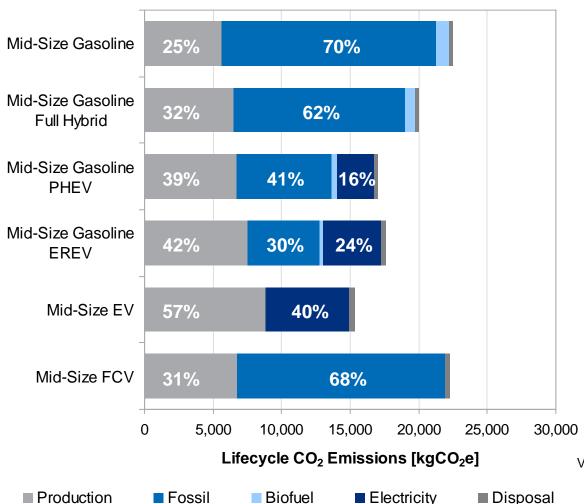
Consequences of Technology Evolution on life cycle CO2 emissions

Increasing the biofuel content helps to reduce Well-to-Wheel CO₂ emissions ...

Mid-size gasoline 73% 23% with E10 Mid-size gasoline 25% 70% with E20 Mid-size gasoline 36% 33% 30% with E85 Mid-size diesel with 26% 70% B7 (FAME) Mid-size diesel with 26% 69% B10 (FAME) Mid-size diesel with 39% 59% B100 (FAME) 5,000 0 10,000 15,000 20,000 25,000 30,000 Lifecycle CO₂ Emissions [kgCO₂e] Production Fossil Biofuel Electricity Disposal

Comparing Alternative Fuels

- The higher the biofuel content, the lower the WTW CO₂ emissions resulting from the use of fuel
- The actual level of saving is dependent on the feedstock and production processes used to make the biofuel
- As WTW CO₂ emissions reduce, the embedded CO₂ emissions from production and disposal become a more significant part of the whole life cycle CO₂ metric


Vehicle specifications based on roadmap projections for 2015. Assumed lifetime mileage 150,000 km. Fuels E10 and B7. Electricity carbon intensity assumed to be 500 gCO₂/kWh. Further details on assumptions is provided in the Appendix 2

Source: Ricardo Analysis – See Appendix 2 for input assumptions Q57627 LowCVP Seminar

RD.11/487501.1 © Ricardo p

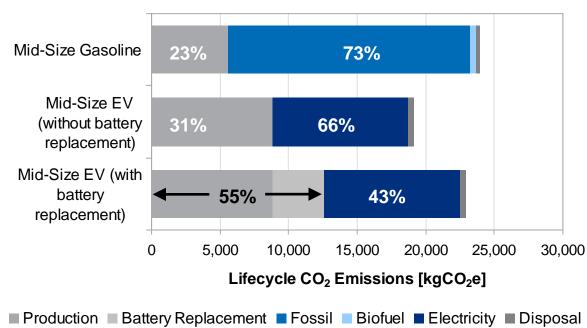
... for conventional and alternative powertrain technologies

Comparing Technologies with Alternative Fuels

- The WTW CO₂ reductions achieved through increasing the use of biofuels also applies to other powertrain technologies
- Reducing the carbon intensity of the UK electricity mix also helps to reduce the WTW CO₂ emissions for plug-in vehicles
- But, as a consequence, CO₂ emissions from production become more significant
 - For an EV, >50% of life cycle $\rm CO_2$ could result from production
- Note: In this study it has been assumed that hydrogen is produced by steam methane reforming of natural gas. If produced from renewable sources, its carbon intensity would be significant reduced by ~90%

Vehicle specifications based on roadmap projections for 2015. Assumed lifetime mileage 150,000 km. Fuels E20. Electricity carbon intensity assumed to be 310 gCO₂/kWh. Further details on assumptions is provided in the Appendix 2

Source: Ricardo Analysis – See Appendix 2 for input assumptions Q57627 LowCVP Seminar


RD.11/487501.1 © Ricar

Other assumptions used in Ricardo's high level analysis of life cycle CO₂ emissions from passenger cars

Other assumptions

- Ricardo's top-down methodology provides a high level estimate of the production, in-use and disposal CO₂ emissions of a generic vehicle, useful for providing an indication of future trends in life cycle CO₂. This process does not currently confirm with ISO 14040
- Assume tailpipe CO_2 is equal to tailpipe CO_2e , since tailpipe emissions other GHGs will be very small
- For EVs, EREVs and PHEVs, assume the battery does not need to be replaced during the vehicle lifetime
 - This study has not investigated the likelihood of a Li-ion or NiMH battery pack lasting the lifetime of a plug-in vehicle

HIGH LEVEL ESTIMATE

© Ricardo plc 2011

21

 If the battery has to be replaced during the vehicle's life, then the embedded CO₂ emissions will increase, as illustrated in the chart left

Vehicle specifications based on roadmap projections for 2015. Assumed lifetime mileage 150,000 km. Fuels E10 and B7. Electricity carbon intensity assumed to be 500 gCO_2/kWh . Further details on assumptions is provided in the Appendices

Source: Ricard	10			
Q57627	LowCVP Seminar	14 November 2011	RD.11/487501.1	(

Ricardo derived a set of vehicle specifications designed to produce equivalent performance characteristics by vehicle size

Vehicle Specifications based on Technology Roadmap projections for 2015

Vehicle	Vehicle Description	Vehicle Mass [kg]	Tailpipe CO ₂ [gCO ₂ /km]	EV Driving Range * [km]
Mid-Size Gasoline	1.4L 91kW I4 DI engine with VVT and FGT	1340 kg	109 gCO ₂ /km	-
Mid-Size Gasoline Full Hybrid	1.4L 91kW I4 DI engine with VVT, 1.8 kWh NiMH battery pack, 56 kW Motor	1430 kg	84 gCO ₂ /km	-
Mid-Size Gasoline PHEV	1.4L 91kW I4 DI engine with VVT, 4.8 kWh Li-ion battery back, 56 kW Motor	1460 kg	47 gCO ₂ /km	20 km
Mid-Size Gasoline EREV	1.0L 44kW I3 PFI engine, 13.4 kWh Li-ion battery back, 72 kW Motor	1510 kg	35 gCO ₂ /km	55 km
Mid-Size EV	32.2 kWh Li-ion battery back, 71 kW Motor	1480 kg	0 gCO ₂ /km	180 km
Mid-Size FCV	73 kW PEM fuel cell system, 1.8 kWh Li-ion battery back, 67 kW Motor	1410 kg	0 gCO ₂ /km	-
Small Gasoline	1.0L 59kW I3 PFI engine with VVT	1080 kg	103 gCO ₂ /km	-
Mid-Size Diesel	2.0L 101kW I4 engine with VGT Turbo	1420 kg	105 gCO ₂ /km	-
Large Diesel	3.0L 123kW V6 engine with VGT Turbo	1720 kg	113 gCO ₂ /km	-
Large Diesel, with downsized ICE and reduced vehicle weight	2.0L 123kW I4 engine with 2 stage turbocharging	1680 kg	90 gCO ₂ /km	-

* Depth of battery discharge for calculating EV range assumed to be 50% for PHEV and EREV, and 70% for EV

Source: Ricardo Q57627

57627 LowCVP Seminar 14 November 2011 RD.11/487501.1 © Ricardo plc 2011 22

Ricardo have developed a simple method for estimating life cycle CO₂ emissions for a range of vehicle technologies

Ricardo's methodology for calculating high level estimates of life cycle CO₂ emissions

Production	In-Use	Fuel	Disposal Total
 Divide vehicle into key sub-systems Determine mass and materials for each system Calculate CO₂ emissions from materials Estimate CO₂ emissions from production 	 Build a vehicle simulation model to predict fuel consumption, and tailpipe CO₂ emissions 	 Determing energy consumption from use phase Identify carbon intensity for each fuel (RED/FQD typical values) Calculate WTW CO₂ emissions for each fuel [gCO₂/km] 	 Assume CO₂ emissions from Disposal is 5% of CO₂ emissions from production Sum together the CO₂ emissions from each phase to obtain the total life cycle CO₂ emissions of the vehicle [kgCO₂]
 processes Sum together to calculate total embedded CO₂ emissions for vehicle production 		 Multiply by life time mileage to obtain total CO₂ emissions from Use and Fuel [kgCO₂] 	Life time mileage assumed to be 150,000 km

Note: This methodology provides an indication of life cycle CO₂, and does not comply with LCA ISO standards 14040 and 14044

Source: Ricard	lo		
Q57627	LowCVP Seminar	14 November 2011	RD.11/487501.1

A variety of alternative fuels were considered ...

Fuel Specifications, and assumptions regarding Well-to-Tank CO₂ emissions (1/2)

- The study has considered three grades of gasoline:
 - E10 containing 10%vol, 7%energy ethanol
 - E20 containing 20%_{vol}, 14%_{energy} ethanol

- E85 containing 80%_{vol}, 73%_{energy} ethanol, to allow for seasonal and regional variations
- Ethanol is assumed to be from a range of feedstocks (70% sugar cane, 20% sugar beet, 8% wheat, 2% corn)
- Carbon intensity of ethanol is assumed to be 28.7 gCO₂e/MJ_{fuel}, derived from RED typical values
- Carbon intensity of gasoline is assumed to be 83.8 gCO₂e/MJ_{fuel}, RED default value
- The study has considered three grades of diesel:

- B7 containing 7%_{vol}, 6%_{energy} FAME
- B10 containing 10%vol, 9%energy FAME
- B100 containing 100%vol, 100%energy FAME
- FAME is assumed to be from a range of feedstocks (40% soy, 25% oilseed rape, 15% tallow, 10% palm, 10% other)
- Carbon intensity of FAME is assumed to be 43.4 gCO₂e/MJ_{fuel}, derived from RED typical values
- Carbon intensity of diesel is assumed to be 83.8 gCO₂e/MJ_{fuel}, RED default value

... including electricity and hydrogen

Fuel Specifications, and assumptions regarding Well-to-Tank CO₂ emissions (2/2)

- Electricity for plug-in vehicles assumed to be from UK National Grid
 - 2010 UK electricity carbon intensity assumed to be 500 gCO₂e/kWh, 139 gCO₂e/MJ (DECC)
 - 2020 UK electricity carbon intensity assumed to be 310 gCO₂e/kWh, 86 gCO₂e/MJ (CCC Scenario)
- Hydrogen was assumed to be from industrial sources, produced using steam methane reforming
 - Carbon intensity for hydrogen assumed to be 99.7 gCO₂e/MJ_{fuel}

